By the same authors

From the same journal

From the same journal

Hyperpolarisation through reversible interactions with parahydrogen

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

Department/unit(s)

Publication details

JournalCatalysis Science and Technology
DateE-pub ahead of print - 11 Jul 2014
DatePublished (current) - 2 Oct 2014
Issue number10
Volume4
Number of pages11
Pages (from-to)3544-3554
Early online date11/07/14
Original languageEnglish

Abstract

We describe here how the complexes Ir(COD)(NHC)Cl [NHC = IMes, SIMes, IPr, SIPr, ICy, IMe and ImMe2NPri 2] provide significant insight into the catalytic process that underpins the hyperpolarization method signal amplification by reversible exchange (SABRE). These complexes react with pyridine and H2to produce [Ir(H)2(NHC)(py)3]Cl which undergo ligand exchange on a timescale commensurate with good catalytic activity for the signal amplification by reversible exchange effect. This activity results from hydride ligand magnetic inequivalence and is highly dependent on the NHC. Variable temperature and kinetic studies demonstrate that rates of ligand loss which lie between 0.1 and 0.5 s-1are ideal for catalysis. A role for the solvent complex [Ir(H)2(MeOH)(NHC)(py)2]Cl, which contains chemically inequivalent hydride ligands is revealed in the ligand exchange pathway. By optimisation of the conditions and NHC, a 5500-fold total pyridine signal enhancement is revealed when the NHC is IMes. Both T1-reduction effects and HD exchange with the solvent are probed and shown to link to catalyst efficiency. The resulting signal enhancements suggest future in vivo MRI measurements under physiological conditions using this catalytic effect will be possible. This journal is

Research outputs

Projects

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations