Identification and characterization of cytochrome P450 1232A24 and 1232F1 from Arthrobacter sp. and their role in the metabolic pathway of papaverine

Jan M Klenk, Max-Philipp Fischer, Paulina Dubiel, Mahima Sharma, Benjamin Rowlinson, Gideon Grogan, Bernhard Hauer

Research output: Contribution to journalArticlepeer-review


Cytochrome P450 monooxygenases (P450s) play crucial roles in the cell metabolism and provide an unsurpassed diversity of catalyzed reactions. Here, we report the identification and biochemical characterization of two P450s from Arthrobacter sp., a gram-positive organism known to degrade the opium alkaloid papaverine. Combining phylogenetic and genomic analysis suggested physiological roles for P450s in metabolism, and revealed potential gene clusters with redox partners facilitating the reconstitution of the P450 activities in vitro. CYP1232F1 catalyzes the para demethylation of 3,4-dimethoxyphenylacetic acid to homovanillic acid while CYP1232A24 continues demethylation to 3,4-dihydroxyphenylacetic acid. Interestingly, the latter enzyme is also able to perform both demethylation steps with preference for the meta position. The crystal structure of CYP1232A24, which shares only 29% identity to previous published structures of P450s helped to rationalize the preferred demethylation specificity for the meta position and also the broader substrate specificity profile. In addition to the detailed characterization of the two P450s using their physiological redox partners, we report the construction of a highly-active whole-cell E. coli biocatalyst expressing CYP1232A24, which formed up to 1.77 g l-1 3,4-dihydroxyphenylacetic acid. Our results revealed the P450s' role in the metabolic pathway of papaverine enabling further investigation and application of these biocatalysts.

Original languageEnglish
JournalThe Journal of Biochemistry
Early online date13 Feb 2019
Publication statusE-pub ahead of print - 13 Feb 2019

Bibliographical note

© The Author(s) 2019. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Cite this