By the same authors

From the same journal

From the same journal

Importance of secondary sources in the atmospheric budgets of formic and acetic acids

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

  • F. Paulot
  • D. Wunch
  • J. D. Crounse
  • G. C. Toon
  • D. B. Millet
  • P. F. DeCarlo
  • C. Vigouroux
  • N. M. Deutscher
  • G. Gonzalez Abad
  • J. Notholt
  • T. Warneke
  • J. W. Hannigan
  • C. Warneke
  • J. A. de Gouw
  • E. J. Dunlea
  • M. De Maziere
  • D. W. T. Griffith
  • P. Bernath
  • J. L. Jimenez
  • P. O. Wennberg

Department/unit(s)

Publication details

JournalAtmospheric Chemistry and Physics
DatePublished - 2011
Issue number5
Volume11
Number of pages25
Pages (from-to)1989-2013
Original languageEnglish

Abstract

We present a detailed budget of formic and acetic acids, two of the most abundant trace gases in the atmosphere. Our bottom-up estimate of the global source of formic and acetic acids are similar to 1200 and similar to 1400 Gmol yr(-1), dominated by photochemical oxidation of biogenic volatile organic compounds, in particular isoprene. Their sinks are dominated by wet and dry deposition. We use the GEOS-Chem chemical transport model to evaluate this budget against an extensive suite of measurements from ground, ship and satellite-based Fourier transform spectrometers, as well as from several aircraft campaigns over North America. The model captures the seasonality of formic and acetic acids well but generally underestimates their concentration, particularly in the Northern midlatitudes. We infer that the source of both carboxylic acids may be up to 50% greater than our estimate and report evidence for a long-lived missing secondary source of carboxylic acids that may be associated with the aging of organic aerosols. Vertical profiles of formic acid in the upper troposphere support a negative temperature dependence of the reaction between formic acid and the hydroxyl radical as suggested by several theoretical studies.

    Research areas

  • VOLATILE ORGANIC-COMPOUNDS, GAS-PHASE OH, IONIZATION MASS-SPECTROMETRY, INFRARED-SPECTROSCOPY AFTIR, KNUDSEN CELL REACTOR, HETEROGENEOUS UPTAKE, INITIATED OXIDATION, HYDROXYL RADICALS, TEMPERATURE-RANGE, CARBOXYLIC-ACIDS

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations