By the same authors

From the same journal

From the same journal

Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina

Research output: Contribution to journalArticlepeer-review

Standard

Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. / Moore, Oliver; Hanson, Polly Ann; Comerford, James William; Pellis, Alessandro; Farmer, Thomas James.

In: Frontiers in Chemistry, Vol. 7, 501, 15.07.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

Moore, O, Hanson, PA, Comerford, JW, Pellis, A & Farmer, TJ 2019, 'Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina', Frontiers in Chemistry, vol. 7, 501. https://doi.org/10.3389/fchem.2019.00501

APA

Moore, O., Hanson, P. A., Comerford, J. W., Pellis, A., & Farmer, T. J. (2019). Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. Frontiers in Chemistry, 7, [501]. https://doi.org/10.3389/fchem.2019.00501

Vancouver

Moore O, Hanson PA, Comerford JW, Pellis A, Farmer TJ. Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. Frontiers in Chemistry. 2019 Jul 15;7. 501. https://doi.org/10.3389/fchem.2019.00501

Author

Moore, Oliver ; Hanson, Polly Ann ; Comerford, James William ; Pellis, Alessandro ; Farmer, Thomas James. / Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina. In: Frontiers in Chemistry. 2019 ; Vol. 7.

Bibtex - Download

@article{b6a26dced32145ffac3d62afb977c2db,
title = "Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina",
abstract = "Bio-based platform molecules such as itaconic, fumaric, and muconic acid offer much promise in the formation of sustainable unsaturated polyester resins upon reaction with suitable diols and polyols. The C=C bonds present in these polyester chains allows for post-polymerization modification and such moieties are conventionally utilized in curing processes during the manufacture of coatings. The C=C modification sites can also act as points to add useful pendants which can alter the polymers final properties such as glass transition temperature, biodegradability, hardness, polarity, and strength. A commonly observed modification is the addition of secondary amines via an aza-Michael addition. Conventional procedures for the addition of amines onto itaconate polyesters require reaction times of several days as a result of undesired side reactions, in particular, the formation of the less reactive mesaconate regioisomer. The slow reversion of the mesaconate back to itaconate, followed by subsequent amine addition, is the primary reason for such extended reaction times. Herein we report our efforts toward finding a suitable catalyst for the aza-Michael addition of diethylamine onto a model substrate, dimethyl itaconate, with the aim of being able to add amine onto the itaconate units without excessive regioisomerization to the inactive mesaconate. A catalyst screen showed that iodine on acidic alumina results in an effective, heterogeneous, reusable catalyst for the investigated aza-Michael addition. Extending the study further, itaconate polyester was prepared by Candida Antartica Lipase B (CaL-B) via enzymatic polytranesterification and subsequently modified with diethylamine using the iodine on acidic alumina catalyst, dramatically reducing the required length of reaction (>70% addition after 4 h). The approach represents a multidisciplinary example whereby biocatalytic polymerization is combined with chemocatalytic modification of the resultant polyester for the formation of useful bio-based polyesters.",
keywords = "Biopolymer, ITACONIC ACID, Enzymatic polymerisation, heterogeneous catalyst, Michael addition, mesaconate",
author = "Oliver Moore and Hanson, {Polly Ann} and Comerford, {James William} and Alessandro Pellis and Farmer, {Thomas James}",
note = "{\textcopyright} 2019 Moore, Hanson, Comerford, Pellis and Farmer",
year = "2019",
month = jul,
day = "15",
doi = "10.3389/fchem.2019.00501",
language = "English",
volume = "7",
journal = "Frontiers in Chemistry",
issn = "2296-2646",
publisher = "Frontiers Media S.A.",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Improving the Post-polymerization Modification of Bio-Based Itaconate Unsaturated Polyesters: Catalyzing Aza-Michael Additions With Reusable Iodine on Acidic Alumina

AU - Moore, Oliver

AU - Hanson, Polly Ann

AU - Comerford, James William

AU - Pellis, Alessandro

AU - Farmer, Thomas James

N1 - © 2019 Moore, Hanson, Comerford, Pellis and Farmer

PY - 2019/7/15

Y1 - 2019/7/15

N2 - Bio-based platform molecules such as itaconic, fumaric, and muconic acid offer much promise in the formation of sustainable unsaturated polyester resins upon reaction with suitable diols and polyols. The C=C bonds present in these polyester chains allows for post-polymerization modification and such moieties are conventionally utilized in curing processes during the manufacture of coatings. The C=C modification sites can also act as points to add useful pendants which can alter the polymers final properties such as glass transition temperature, biodegradability, hardness, polarity, and strength. A commonly observed modification is the addition of secondary amines via an aza-Michael addition. Conventional procedures for the addition of amines onto itaconate polyesters require reaction times of several days as a result of undesired side reactions, in particular, the formation of the less reactive mesaconate regioisomer. The slow reversion of the mesaconate back to itaconate, followed by subsequent amine addition, is the primary reason for such extended reaction times. Herein we report our efforts toward finding a suitable catalyst for the aza-Michael addition of diethylamine onto a model substrate, dimethyl itaconate, with the aim of being able to add amine onto the itaconate units without excessive regioisomerization to the inactive mesaconate. A catalyst screen showed that iodine on acidic alumina results in an effective, heterogeneous, reusable catalyst for the investigated aza-Michael addition. Extending the study further, itaconate polyester was prepared by Candida Antartica Lipase B (CaL-B) via enzymatic polytranesterification and subsequently modified with diethylamine using the iodine on acidic alumina catalyst, dramatically reducing the required length of reaction (>70% addition after 4 h). The approach represents a multidisciplinary example whereby biocatalytic polymerization is combined with chemocatalytic modification of the resultant polyester for the formation of useful bio-based polyesters.

AB - Bio-based platform molecules such as itaconic, fumaric, and muconic acid offer much promise in the formation of sustainable unsaturated polyester resins upon reaction with suitable diols and polyols. The C=C bonds present in these polyester chains allows for post-polymerization modification and such moieties are conventionally utilized in curing processes during the manufacture of coatings. The C=C modification sites can also act as points to add useful pendants which can alter the polymers final properties such as glass transition temperature, biodegradability, hardness, polarity, and strength. A commonly observed modification is the addition of secondary amines via an aza-Michael addition. Conventional procedures for the addition of amines onto itaconate polyesters require reaction times of several days as a result of undesired side reactions, in particular, the formation of the less reactive mesaconate regioisomer. The slow reversion of the mesaconate back to itaconate, followed by subsequent amine addition, is the primary reason for such extended reaction times. Herein we report our efforts toward finding a suitable catalyst for the aza-Michael addition of diethylamine onto a model substrate, dimethyl itaconate, with the aim of being able to add amine onto the itaconate units without excessive regioisomerization to the inactive mesaconate. A catalyst screen showed that iodine on acidic alumina results in an effective, heterogeneous, reusable catalyst for the investigated aza-Michael addition. Extending the study further, itaconate polyester was prepared by Candida Antartica Lipase B (CaL-B) via enzymatic polytranesterification and subsequently modified with diethylamine using the iodine on acidic alumina catalyst, dramatically reducing the required length of reaction (>70% addition after 4 h). The approach represents a multidisciplinary example whereby biocatalytic polymerization is combined with chemocatalytic modification of the resultant polyester for the formation of useful bio-based polyesters.

KW - Biopolymer

KW - ITACONIC ACID

KW - Enzymatic polymerisation

KW - heterogeneous catalyst

KW - Michael addition

KW - mesaconate

UR - https://www.frontiersin.org/articles/10.3389/fchem.2019.00501/full

U2 - 10.3389/fchem.2019.00501

DO - 10.3389/fchem.2019.00501

M3 - Article

VL - 7

JO - Frontiers in Chemistry

JF - Frontiers in Chemistry

SN - 2296-2646

M1 - 501

ER -