Induced representation of affine Hecke algebras and canonical bases of quantum groups

Research output: Chapter in Book/Report/Conference proceedingOther chapter contribution

Standard

Induced representation of affine Hecke algebras and canonical bases of quantum groups. / Leclerc, Bernard; Nazarov, Maxim; Thibon, Jean-Yves.

Studies in Memory of Issai Schur. ed. / Anthony Joseph; Anna Melnikov; Rudolf Rentschler. Vol. 210 Springer-Verlag, 2003. p. 115-153 (Progress in Mathematics; Vol. 210).

Research output: Chapter in Book/Report/Conference proceedingOther chapter contribution

Harvard

Leclerc, B, Nazarov, M & Thibon, J-Y 2003, Induced representation of affine Hecke algebras and canonical bases of quantum groups. in A Joseph, A Melnikov & R Rentschler (eds), Studies in Memory of Issai Schur. vol. 210, Progress in Mathematics, vol. 210, Springer-Verlag, pp. 115-153. <http://arxiv.org/abs/math.QA/0011074>

APA

Leclerc, B., Nazarov, M., & Thibon, J-Y. (2003). Induced representation of affine Hecke algebras and canonical bases of quantum groups. In A. Joseph, A. Melnikov, & R. Rentschler (Eds.), Studies in Memory of Issai Schur (Vol. 210, pp. 115-153). (Progress in Mathematics; Vol. 210). Springer-Verlag. http://arxiv.org/abs/math.QA/0011074

Vancouver

Leclerc B, Nazarov M, Thibon J-Y. Induced representation of affine Hecke algebras and canonical bases of quantum groups. In Joseph A, Melnikov A, Rentschler R, editors, Studies in Memory of Issai Schur. Vol. 210. Springer-Verlag. 2003. p. 115-153. (Progress in Mathematics).

Author

Leclerc, Bernard ; Nazarov, Maxim ; Thibon, Jean-Yves. / Induced representation of affine Hecke algebras and canonical bases of quantum groups. Studies in Memory of Issai Schur. editor / Anthony Joseph ; Anna Melnikov ; Rudolf Rentschler. Vol. 210 Springer-Verlag, 2003. pp. 115-153 (Progress in Mathematics).

Bibtex - Download

@inbook{8947e2b811f64d99be2e4e411eff8456,
title = "Induced representation of affine Hecke algebras and canonical bases of quantum groups",
abstract = "A criterion of irreducibility for induction products of evaluation modules of type A affine Hecke algebras is given. It is derived from multiplicative properties of the canonical basis of a quantum deformation of the Bernstein-Zelevinsky ring.",
keywords = "algebra, math physics, representation theory ",
author = "Bernard Leclerc and Maxim Nazarov and Jean-Yves Thibon",
year = "2003",
language = "English",
isbn = "978-0-8176-4208-2",
volume = "210",
series = "Progress in Mathematics",
publisher = "Springer-Verlag",
pages = "115--153",
editor = "Anthony Joseph and Anna Melnikov and Rudolf Rentschler",
booktitle = "Studies in Memory of Issai Schur",
address = "Germany",

}

RIS (suitable for import to EndNote) - Download

TY - CHAP

T1 - Induced representation of affine Hecke algebras and canonical bases of quantum groups

AU - Leclerc, Bernard

AU - Nazarov, Maxim

AU - Thibon, Jean-Yves

PY - 2003

Y1 - 2003

N2 - A criterion of irreducibility for induction products of evaluation modules of type A affine Hecke algebras is given. It is derived from multiplicative properties of the canonical basis of a quantum deformation of the Bernstein-Zelevinsky ring.

AB - A criterion of irreducibility for induction products of evaluation modules of type A affine Hecke algebras is given. It is derived from multiplicative properties of the canonical basis of a quantum deformation of the Bernstein-Zelevinsky ring.

KW - algebra

KW - math physics

KW - representation theory

M3 - Other chapter contribution

SN - 978-0-8176-4208-2

VL - 210

T3 - Progress in Mathematics

SP - 115

EP - 153

BT - Studies in Memory of Issai Schur

A2 - Joseph, Anthony

A2 - Melnikov, Anna

A2 - Rentschler, Rudolf

PB - Springer-Verlag

ER -