Influence of Antipodally Coupled Iodine and Carbon Atoms on the Cage Structure of 9,12-I2-closo-1,2-C2B10H10: An Electron Diffraction and Computational Study

Yury V. Vishnevskiy*, Denis S. Tikhonov, Christian G. Reuter, Norbert W. Mitzel, Drahomír Hnyk, Josef Holub, Derek A. Wann, Paul D. Lane, Raphael J F Berger, Stuart A. Hayes

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Because of the comparable electron scattering abilities of carbon and boron, the electron diffraction structure of the C2v-symmetric molecule closo-1,2-C2B10H12 (1), one of the building blocks of boron cluster chemistry, is not as accurate as it could be. On that basis, we have prepared the known diiodo derivative of 1, 9,12-I2-closo-1,2-C2B10H10 (2), which has the same point-group symmetry as 1 but in which the presence of iodine atoms, with their much stronger ability to scatter electrons, ensures much better structural characterization of the C2B10 icosahedral core. Furthermore, the influence on the C2B10 geometry in 2 of the antipodally positioned iodine substituents with respect to both carbon atoms has been examined using the concerted application of gas electron diffraction and quantum chemical calculations at the MP2 and density functional theory (DFT) levels. The experimental and computed molecular geometries are in good overall agreement. Molecular dynamics simulations used to obtain vibrational parameters, which are needed for analyzing the electron diffraction data, have been performed for the first time for this class of compound. According to DFT calculations at the ZORA-SO/BP86 level, the 11B chemical shifts of the boron atoms to which the iodine substituents are bonded are dominated by spin-orbit coupling. Magnetically induced currents within 2 have been calculated and compared to those for [B12H12]2-, the latter adopting a regular icosahedral structure with Ih point-group symmetry. Similar total current strengths are found but with a certain anisotropy, suggesting that spherical aromaticity is present; electron delocalization in the plane of the hetero atoms in 2 is slightly hindered compared to that for [B12H12]2-, presumably because of the departure from ideal icosahedral symmetry.

Original languageEnglish
Pages (from-to)11868-11874
Number of pages7
JournalInorganic Chemistry
Issue number24
Early online date1 Dec 2015
Publication statusPublished - 2015

Bibliographical note

© 2015 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details

Cite this