By the same authors

From the same journal

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

Research output: Contribution to journalArticle

Standard

Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. / Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F N; Calisti, A; Ferri, S; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph; Law, K. F.F.; Marquès, J. R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

In: Physics of Plasmas, Vol. 25, No. 5, 056705, 01.05.2018.

Research output: Contribution to journalArticle

Harvard

Santos, JJ, Bailly-Grandvaux, M, Ehret, M, Arefiev, AV, Batani, D, Beg, FN, Calisti, A, Ferri, S, Florido, R, Forestier-Colleoni, P, Fujioka, S, Gigosos, MA, Giuffrida, L, Gremillet, L, Honrubia, JJ, Kojima, S, Korneev, P, Law, KFF, Marquès, JR, Morace, A, Mossé, C, Peyrusse, O, Rose, S, Roth, M, Sakata, S, Schaumann, G, Suzuki-Vidal, F, Tikhonchuk, VT, Toncian, T, Woolsey, N & Zhang, Z 2018, 'Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics', Physics of Plasmas, vol. 25, no. 5, 056705. https://doi.org/10.1063/1.5018735

APA

Santos, J. J., Bailly-Grandvaux, M., Ehret, M., Arefiev, A. V., Batani, D., Beg, F. N., ... Zhang, Z. (2018). Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Physics of Plasmas, 25(5), [056705]. https://doi.org/10.1063/1.5018735

Vancouver

Santos JJ, Bailly-Grandvaux M, Ehret M, Arefiev AV, Batani D, Beg FN et al. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. Physics of Plasmas. 2018 May 1;25(5). 056705. https://doi.org/10.1063/1.5018735

Author

Santos, J. J. ; Bailly-Grandvaux, M. ; Ehret, M. ; Arefiev, A. V. ; Batani, D. ; Beg, F N ; Calisti, A ; Ferri, S ; Florido, R. ; Forestier-Colleoni, P. ; Fujioka, S. ; Gigosos, M. A. ; Giuffrida, L. ; Gremillet, L. ; Honrubia, J. J. ; Kojima, S. ; Korneev, Ph ; Law, K. F.F. ; Marquès, J. R. ; Morace, A. ; Mossé, C. ; Peyrusse, O. ; Rose, S. ; Roth, M. ; Sakata, S. ; Schaumann, G. ; Suzuki-Vidal, F. ; Tikhonchuk, V. T. ; Toncian, T. ; Woolsey, N. ; Zhang, Z. / Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics. In: Physics of Plasmas. 2018 ; Vol. 25, No. 5.

Bibtex - Download

@article{cf71df6bf14d4cc4980ebc003ae01c39,
title = "Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics",
abstract = "Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.",
author = "Santos, {J. J.} and M. Bailly-Grandvaux and M. Ehret and Arefiev, {A. V.} and D. Batani and Beg, {F N} and A Calisti and S Ferri and R. Florido and P. Forestier-Colleoni and S. Fujioka and Gigosos, {M. A.} and L. Giuffrida and L. Gremillet and Honrubia, {J. J.} and S. Kojima and Ph Korneev and Law, {K. F.F.} and Marqu{\`e}s, {J. R.} and A. Morace and C. Moss{\'e} and O. Peyrusse and S. Rose and M. Roth and S. Sakata and G. Schaumann and F. Suzuki-Vidal and Tikhonchuk, {V. T.} and T. Toncian and N. Woolsey and Z. Zhang",
note = "This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details",
year = "2018",
month = "5",
day = "1",
doi = "10.1063/1.5018735",
language = "English",
volume = "25",
journal = "Physics of Plasmas",
issn = "1070-664X",
publisher = "American Institute of Physics Publising LLC",
number = "5",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

AU - Santos, J. J.

AU - Bailly-Grandvaux, M.

AU - Ehret, M.

AU - Arefiev, A. V.

AU - Batani, D.

AU - Beg, F N

AU - Calisti, A

AU - Ferri, S

AU - Florido, R.

AU - Forestier-Colleoni, P.

AU - Fujioka, S.

AU - Gigosos, M. A.

AU - Giuffrida, L.

AU - Gremillet, L.

AU - Honrubia, J. J.

AU - Kojima, S.

AU - Korneev, Ph

AU - Law, K. F.F.

AU - Marquès, J. R.

AU - Morace, A.

AU - Mossé, C.

AU - Peyrusse, O.

AU - Rose, S.

AU - Roth, M.

AU - Sakata, S.

AU - Schaumann, G.

AU - Suzuki-Vidal, F.

AU - Tikhonchuk, V. T.

AU - Toncian, T.

AU - Woolsey, N.

AU - Zhang, Z.

N1 - This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details

PY - 2018/5/1

Y1 - 2018/5/1

N2 - Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

AB - Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2. The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

UR - http://www.scopus.com/inward/record.url?scp=85047012227&partnerID=8YFLogxK

U2 - 10.1063/1.5018735

DO - 10.1063/1.5018735

M3 - Article

VL - 25

JO - Physics of Plasmas

JF - Physics of Plasmas

SN - 1070-664X

IS - 5

M1 - 056705

ER -