Learning to Coordinate Using Commitment Sequences in Cooperative Multi-agent Systems

Spiros Kapetanakis, Daniel Kudenko, Malcolm J. A. Strens

Research output: Contribution to conferencePaperpeer-review

Abstract

We report on an investigation of the learning of coordination in cooperative multiagent systems. Specifically, we study solutions that are applicable to independent agents, i.e., agents that do not observe one another’s actions and do not explicitly communicate with each other. In previously published work (Kapetanakis and Kudenko, 2002) we have presented a reinforcement learning approach that converges to the optimal joint action even in scenarios with high miscoordination costs. However, this approach failed in fully stochastic environments. In this paper, we present a novel approach based on reward estimation with a shared action-selection protocol. The new technique is applicable in fully stochastic environments where mutual observation of actions is not possible. We demonstrate empirically that our approach causes the agents to converge almost always to the optimal joint action even in difficult stochastic scenarios with high miscoordination penalties
Original languageUndefined/Unknown
Pages106-118
Publication statusPublished - 2005

Cite this