Projects per year
Abstract
Doppler Shift Attenuation Method (DSAM) analysis of excited-state lifetimes normally employs thin production targets mounted on a thick stopper foil ("backing") serving to slow down and stop the recoiling nuclei of interest in a well-defined manner. Use of a thick, homogeneous production target leads to a more complex analysis as it results in a substantial decrease in the energy of the incident projectile which traverses the target with an associated change in the production cross section of the residues as a function of penetration depth. Here, a DSAM lifetime analysis using a thick homogeneous target has been verified using the Doppler broadened lineshapes of γ rays following the decay of highly excited states in the semi-magic (N = 50) nucleus 94Ru. Lifetimes of excited states in the 94Ru nucleus have been obtained using a modified version of the LINESHAPE package from the Doppler broadened lineshapes resulting from the emission of theγ rays, while the residual nuclei were slowing down in the thick (6 mg/cm2) metallic 58Ni target. The results have been validated by comparison with a previous measurement using a different (RDDS) technique.
Original language | English |
---|---|
Pages (from-to) | 325-329 |
Number of pages | 5 |
Journal | Acta Physica Polonica B |
Volume | 48 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2017 |
Projects
- 1 Finished
-
Nuclear Physics Consolidated Grant
Wadsworth, R. (Principal investigator), Wadsworth, R. (Principal investigator), Andreyev, A. (Co-investigator), Andreyev, A. (Co-investigator), Barton, C. J. (Co-investigator), Diget, C. A. (Co-investigator), Diget, C. A. (Co-investigator), Fulton, B. R. (Co-investigator), Fulton, B. R. (Co-investigator), Jenkins, D. (Co-investigator), Jenkins, D. (Co-investigator), Laird, A. M. (Co-investigator) & Laird, A. M. (Co-investigator)
SCIENCE AND TECHNOLOGY FACILITIES COUNCIL (STFC)
1/08/14 → 30/09/18
Project: Research project (funded) › Research