Linking Electronic Relaxation Dynamics and Ionic Photofragmentation Patterns for the Deprotonated UV Filter Benzophenone-4

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding how deprotonation impacts on the photophysics of UV filters is critical to better characterize how they behave in key alkaline environments including surface waters and coral reefs. Using anion photodissociation spectroscopy, we have measured the intrinsic absorption electronic spectroscopy (400-214 nm) and numerous accompanying ionic photofragmentation pathways of the benzophenone-4 anion ([BP4–H]–). Relative ion yield plots reveal the locations of the bright S1 and S3 excited states. For the first time for an ionic UV filter, ab initio potential energy surfaces are presented to provide new insight into how the photofragment identity maps the relaxation pathways. These calculations reveal that [BP4–H]– undergoes excited-state decay consistent with a statistical fragmentation process where the anion breaks down on the ground state after non-radiative relaxation. The broader relevance of the results in providing a basis for interpreting the relaxation dynamics of a wide range ionic systems is discussed.
Original languageEnglish
Pages (from-to)2831-2836
Number of pages6
JournalJOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume12
Issue number11
Early online date2 Mar 2021
DOIs
Publication statusPublished - 15 Mar 2021

Bibliographical note

© 2021 The Authors. Published by American Chemical Society

Cite this