LLM-BT: Performing Robotic Adaptive Tasks based on Large Language Models and Behavior Trees

Haotian Zhou, Yunhan Lin, Longwu Yan, Jihong Zhu, Huasong Min*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Large Language Models (LLMs) have been widely utilized to perform complex robotic tasks. However, handling external disturbances during tasks is still an open challenge. This paper proposes a novel method to achieve robotic adaptive tasks based on LLMs and Behavior Trees (BTs). It utilizes ChatGPT to reason the descriptive steps of tasks. In order to enable ChatGPT to understand the environment, semantic maps are constructed by an object recognition algorithm. Then, we design a Parser module based on Bidirectional Encoder Representations from Transformers (BERT) to parse these steps into initial BTs. Subsequently, a BTs Update algorithm is proposed to expand the initial BTs dynamically to control robots to perform adaptive tasks. Different from other LLM-based methods for complex robotic tasks, our method outputs variable BTs that can add and execute new actions according to environmental changes, which is robust to external disturbances. Our method is validated with simulation in different practical scenarios.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages16655-16661
Number of pages7
ISBN (Electronic)9798350384574
DOIs
Publication statusPublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Cite this