Load-independent contributions from motor-unit synchronization to human physiological tremor

David M. Halliday*, Bernard A. Conway, Simon F. Farmer, Jay R. Rosenberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


This study describes two load-independent rhythmic contributions from motor-unit synchronization to normal physiological tremor, which occur in the frequency ranges 1-12 Hz and 15-30 Hz. In common with previous studies, we use increased inertial loading to identify load-independent components of physiological tremor. The data consist of simultaneous recordings of tremor acceleration from the third finger, a surface electromyogram (EMG), and the discharges of pairs of single motor units from the extensor digitorum communis (EDC) muscle, collected from 13 subjects, and divided into 2 data sets: 106 records with the finger unloaded and 84 records with added mass from 5 to 40 g. Frequency domain analysis of motor-unit data from individual subjects reveals the presence of two distinct frequency bands in motor-unit synchronization, 1-12 Hz and 15-30 Hz. A novel Fourier-based population analysis demonstrates that the same two rhythmic components are present in motor-unit synchronization across both data sets. These frequency components are not related to motor-unit firing rates. The same frequency bands are present in the correlation between motor-unit activity and tremor and between surface EMG activity and tremor, despite a significant alteration in the characteristics of the tremor with increased inertial loading. A multivariate analysis demonstrates conclusively that motor-unit synchronization is the source of these contributions to normal physiological tremor. The population analysis suggests that single motor-unit discharges can predict an average of 10% of the total tremor signal in these two frequency bands. Rectified surface EMG can predict an average of 20% of the tremor; therefore within our population of recordings, the two components of motor-unit synchronization account for an average of 20% of the total tremor signal, in the frequency ranges 1-12 Hz and 15-30 Hz. Our results demonstrate that normal physiological tremor is a complex signal containing information relating to motor-unit synchronization in different frequency bands, and lead to a revised definition of normal physiological tremor during low force postural contractions, which is based on using both the tremor spectra and the correlation between motor-unit activity and tremor to characterize the load- dependent and the load-independent components of tremor. In addition, both physiological tremor and rectified EMG emerge as powerful predictors of the frequency components of motor-unit synchronization.

Original languageEnglish
Pages (from-to)664-675
Number of pages12
JournalJournal of Neurophysiology
Issue number2
Publication statusPublished - 1999

Cite this