Low-Complexity and Robust Hybrid Beamforming Design for Multi-Antenna Communication Systems

Mehdi Mortazawi Molu, Pei Xiao, Mohsen Khalily, Kanapathippillai Cumanan, Lei Zhang, Rahim Tafazolli

Research output: Contribution to journalArticlepeer-review


This paper proposes a low-complexity hybrid beamforming design for multi-antenna communication systems. The hybrid beamformer is comprised of a baseband digital beamformer and a constant modulus analog beamformer in the radio frequency (RF) part of the system. As in singular-value-decomposition (SVD)-based beamforming, hybrid beamforming design aims to generate parallel data streams in multi-antenna systems, however, due to the constant modulus constraint of the analog beamformer, the problem cannot be solved similarly. To address this problem, mathematical expressions of the parallel data streams are derived in this paper and desired and interfering signals are specified per stream. The analog beamformers are designed by maximizing the power of desired signal while minimizing the sum-power of interfering signals. Finally, digital beamformers are derived by defining the equivalent channel observed by the transmitter/receiver. Regardless of the number of the antennas or type of channel, the proposed approach can be applied to a wide range of MIMO systems with hybrid structure wherein the number of the antennas is more than the number of the RF chains. In particular, the proposed algorithm is verified for sparse channels that emulate mm-wave transmission as well as rich scattering environments. In order to validate the optimality, the results are compared with those of the state-of-the-art and it is demonstrated that the performance of the proposed method outperforms state-of-the-art techniques, regardless of type of the channel and/or system configuration.

Original languageEnglish
Pages (from-to)1445-1459
Number of pages15
JournalIEEE Transactions on Wireless Communications
Issue number3
Early online date12 Dec 2017
Publication statusPublished - 1 Mar 2018

Bibliographical note

(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works


  • Hybrid beamforming
  • MAssive MIMO
  • millimetre wave

Cite this