Maximal regularity for stochastic convolutions driven by Lévy processes

Zdzislaw Brzezniak, Erika Hausenblas

Research output: Contribution to journalArticlepeer-review

Abstract

We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25-29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.

Original languageEnglish
Pages (from-to)615-637
Number of pages23
JournalProbability Theory and Related Fields
Volume145
Issue number3-4
DOIs
Publication statusPublished - Nov 2009

Keywords

  • Stochastic convolution
  • Time homogeneous Poisson random measure and maximal regularity
  • Martingale type p Banach spaces
  • BANACH-SPACES
  • EVOLUTION EQUATIONS
  • MARTINGALES

Cite this