Abstract
We generalize the maximal regularity result from Da Prato and Lunardi (Atti Accad Naz Lincei Cl Sci Fis Mat Natur Rend Lincei (9) Mat Appl 9(1):25-29, 1998) to stochastic convolutions driven by time homogenous Poisson random measures and cylindrical infinite dimensional Wiener processes.
Original language | English |
---|---|
Pages (from-to) | 615-637 |
Number of pages | 23 |
Journal | Probability Theory and Related Fields |
Volume | 145 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - Nov 2009 |
Keywords
- Stochastic convolution
- Time homogeneous Poisson random measure and maximal regularity
- Martingale type p Banach spaces
- BANACH-SPACES
- EVOLUTION EQUATIONS
- MARTINGALES