Membrane potential stabilization in amphibian skeletal muscle fibres in hypertonic solutions

Emily A Ferenczi, James A Fraser, Sangeeta Chawla, Jeremy N Skepper, Christof J Schwiening, Christopher L-H Huang

Research output: Contribution to journalArticlepeer-review

Abstract

This study investigated membrane transport mechanisms influencing relative changes in cell volume (V) and resting membrane potential (E(m)) following osmotic challenge in amphibian skeletal muscle fibres. It demonstrated a stabilization of E(m) despite cell shrinkage, which was attributable to elevation of intracellular [Cl(-)] above electrochemical equilibrium through Na(+)-Cl(-) and Na(+)-K(+)-2Cl(-) cotransporter action following exposures to extracellular hypertonicity. Fibre volumes (V) determined by confocal microscope x z - scanning of cutaneous pectoris muscle fibres varied linearly with [1/extracellular osmolarity], showing insignificant volume corrections, in fibres studied in Cl(-)-free, normal and Na(+)-free Ringer solutions and in the presence of bumetanide, chlorothiazide and ouabain. The observed volume changes following increases in extracellular tonicity were compared with microelectrode measurements of steady-state resting potentials (E(m)). Fibres in isotonic Cl(-)-free, normal and Na(+)-free Ringer solutions showed similar E(m) values consistent with previously reported permeability ratios P(Na)/P(K)(0.03-0.05) and P(Cl)/P(K) ( approximately 2.0) and intracellular [Na(+)], [K(+)] and [Cl(-)]. Increased extracellular osmolarities produced hyperpolarizing shifts in E(m) in fibres studied in Cl(-)-free Ringer solution consistent with the Goldman-Hodgkin-Katz (GHK) equation. In contrast, fibres exposed to hypertonic Ringer solutions of normal ionic composition showed no such E(m) shifts, suggesting a Cl(-)-dependent stabilization of membrane potential. This stabilization of E(m) was abolished by withdrawing extracellular Na(+) or by the combined presence of the Na(+)-Cl(-) cotransporter (NCC) inhibitor chlorothiazide (10 microM) and the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) inhibitor bumetanide (10 microM), or the Na(+)-K(+)-ATPase inhibitor ouabain (1 or 10 microM) during alterations in extracellular osmolarity. Application of such agents after such increases in tonicity only produced a hyperpolarization after a time delay, as expected for passive Cl(-) equilibration. These findings suggest a model that implicates the NCC and/or NKCC in fluxes that maintain [Cl(-)](i) above its electrochemical equilibrium. Such splinting of [Cl(-)](i) in combination with the high P(Cl)/P(K) of skeletal muscle stabilizes E(m) despite volume changes produced by extracellular hypertonicity, but at the expense of a cellular capacity for regulatory volume increases (RVIs). In situations where P(Cl)/P(K) is low, the same co-transporters would instead permit RVIs but at the expense of a capacity to stabilize E(m).
Original languageEnglish
Pages (from-to)423-38
Number of pages16
JournalJournal of Physiology
Volume555
Issue numberPt 2
DOIs
Publication statusPublished - 2004

Keywords

  • Animals
  • Calibration
  • Cell Size
  • Electrophysiology
  • Enzyme Inhibitors
  • Hypertonic Solutions
  • Image Processing, Computer-Assisted
  • Kinetics
  • Membrane Potentials
  • Microscopy, Confocal
  • Muscle Fibers, Skeletal
  • Osmolar Concentration
  • Patch-Clamp Techniques
  • Rana temporaria
  • Sodium
  • Sodium-Potassium-Chloride Symporters
  • Sodium-Potassium-Exchanging ATPase

Cite this