Abstract
Here we report the synthesis of a series of polyhydroxylated 3- and 5-acetamido azepanes and detail the molecular basis of their inhibition of family 84 glycoside hydrolases. These family 84 enzymes include human O-GlcNAcase, an enzyme involved in post-translation a I processing of intracellular proteins modified by O-linked B-N-acetylglucosamine residues. Detailed structural analysis of the binding of these azepanes to BtGH84, a bacterial homologue of O-GlcNAcase, highlights their conformational flexibility. Molecular mechanics and molecular dynamics calculations reveal that binding to the enzyme involves significant conformational distortion of these inhibitors from their preferred solution conformations. The binding of these azepanes provides structural insight into substrate distortion that likely occurs along the reaction coordinate followed by O-GlcNAcase during glycoside hydrolysis. This class of inhibitors may prove to be useful probes for evaluating the conformational itineraries of glycosidases and aid the development of more potent and specific glycosidase inhibitors.
Original language | English |
---|---|
Pages (from-to) | 5390-+ |
Number of pages | 5 |
Journal | Journal of the American Chemical Society |
Volume | 131 |
Issue number | 15 |
DOIs | |
Publication status | Published - 22 Apr 2009 |
Keywords
- BETA-N-ACETYLGLUCOSAMINIDASE
- O-GLCNACASE
- STRUCTURAL INSIGHTS
- D-GLUCOSE
- CATALYTIC MECHANISM
- ANALOGS
- IMINOCYCLITOLS
- NOJIRIMYCIN
- HYDROLYSIS
- PROTEINS