Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens whose ability to produce Shiga toxin (Stx) is due to integration of Stx-encoding lambdoid bacteriophages. These Stx phages are both genetically and morphologically heterogeneous, and here we report the design and validation of a PCR-based multilocus typing scheme. PCR primer sets were designed for database variants of a range of key lambdoid bacteriophage genes and applied to control phages and 70 stx(+) phage preparations induced from a collection of STEC isolates. The genetic diversity residing within these populations could be described, and observations were made on the heterogeneity of individual gene targets, including the unexpected predominance of short-tailed phages with a highly conserved tail spike protein gene. Purified Stx phages can be profiled using this scheme, and the lambdoid phage-borne genes in induced STEC preparations can be identified as well as those residing in the noninducible prophage complement. The ultimate goal is to enable robust and realistically applicable epidemiological studies of Stx phages and their traits. The impact of Stx phage on STEC epidemiology is currently unknown.
Original language | English |
---|---|
Pages (from-to) | 8032-40 |
Number of pages | 9 |
Journal | Applied and Environmental Microbiology |
Volume | 73 |
Issue number | 24 |
DOIs | |
Publication status | Published - Dec 2007 |
Keywords
- Bacteriophages
- Polymerase Chain Reaction
- Shiga Toxin
- Shiga-Toxigenic Escherichia coli