Research output: Contribution to journal › Article › peer-review

Journal | Journal of Mathematical Physics |
---|---|

Date | Published - 1 Aug 2012 |

Issue number | 8 |

Volume | 53 |

Pages (from-to) | 1-26 |

Original language | English |

We study the Yangian of the sl(2|1) Lie superalgebra in a multi-parametric four-dimensional representation. We use Drinfeld’s second realization to derive the Rmatrix, the antiparticle representation, the crossing and unitarity condition. We consistently apply the Yangian antipode and its inverse to the individual particles involved in the scattering. We explicitly find a scalar factor solving the crossing and unitarity conditions, and study the analytic structure of the resulting dressed R-matrix. The formulas we obtain bear some similarities with those familiar from the study of integrable structures in the AdS/CFT correspondence, although they present obvious crucial differences.

## Nonultralocality and new mathematical structures in quantum integrability

Project: Research project (funded) › Research

Find related publications, people, projects, datasets and more using interactive charts.