Abstract
Let
p(x) = [x]-x + l/2 (1)
and Ax,A2,...,An, ax,a2,... ,an be positive integers. We consider the
related integrals
I(AX,A2, ...,An)=\ p(AlX)p(A2x).. .p(Anx)dx (2)
0
and
J{ax,a2,...,an) = | p[-)p[-)...p[ — )dx. (3)
p(x) = [x]-x + l/2 (1)
and Ax,A2,...,An, ax,a2,... ,an be positive integers. We consider the
related integrals
I(AX,A2, ...,An)=\ p(AlX)p(A2x).. .p(Anx)dx (2)
0
and
J{ax,a2,...,an) = | p[-)p[-)...p[ — )dx. (3)
Original language | English |
---|---|
Pages (from-to) | 51-70 |
Number of pages | 20 |
Journal | Mathematika |
Volume | 40 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jun 1993 |
Keywords
- NUMBER THEORY;
- Diophantine approximation;
- Distribution modulo one