Abstract
Estimating food production under future air pollution and climate conditions in scenario analysis depends on accurately modelling ozone (O₃) effects on yield. This study tests several assumptions that form part of published approaches for modelling O₃ effects on photosynthesis and leaf duration against experimental data. In 2015 and 2016, two wheat cultivars were exposed in eight hemispherical glasshouses to O₃ ranging from 22 to 57 ppb (24 h mean), with profiles ranging from raised background to high peak treatments. The stomatal O₃ flux (Phytotoxic Ozone Dose, POD) to leaves was simulated using a multiplicative stomatal conductance model. Leaf senescence occurred earlier as average POD increased according to a linear relationship, and the two cultivars showed very different senescence responses. Negative effects of O₃ on photosynthesis were only observed alongside O₃-induced leaf senescence, suggesting that O₃ does not impair photosynthesis in un-senesced flag leaves at the realistic O₃ concentrations applied here. Accelerated senescence is therefore likely to be the dominant O₃ effect influencing yield in most agricultural environments. POD was better than 24 h mean concentration and AOT40 (accumulated O₃ exceeding 40 ppb, daylight hours) at predicting physiological response to O₃, and flux also accounted for the difference in exposure resulting from peak and high background treatments.
Original language | English |
---|---|
Article number | 84 |
Number of pages | 30 |
Journal | Plants |
Volume | 8 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Apr 2019 |
Bibliographical note
© 2019 by the authors.Keywords
- ozone; air pollution; wheat; photosynthesis; leaf senescence; crop modelling
- Crop modeling
- Air pollution
- Ozone
- Leaf senescence
- Photosynthesis
- Wheat