By the same authors

From the same journal

From the same journal

New Riemannian techniques for directional and tensorial image data

Research output: Contribution to journalArticle

Published copy (DOI)

Author(s)

Department / unit(s)

Publication details

JournalPattern recognition
Journal publication dateApr 2010
Issue number4
Volume43
Number of pages17
Pages (from-to)1590-1606
Original languageEnglish

Abstract

This paper develops new geometrical filtering and edge detection algorithms for processing non-Euclidean image data. We view image data as residing on a Riemannian manifold, and we work with a representation based on the exponential map for this manifold together with the Riemannian weighted mean of image data. We show how the weighted mean can be efficiently computed using Newton's method, which converges faster than the gradient descent method described elsewhere in the literature. Based on geodesic distances and the exponential map, we extend the classical median filter and the Perona-Malik anisotropic diffusion technique to smooth non-Euclidean image data. We then propose an anisotropic Gaussian kernel for image filtering, and we also show how both the median filter and the anisotropic Gaussian filter can be combined to develop a new edge preserving filter, which is effective at removing both Gaussian noise and impulse noise. By using the intrinsic metric of the feature manifold, we also generalise Di Zenzo's structure tensor to non-Euclidean images for edge detection. We demonstrate the applications of our Riemannian filtering and edge detection algorithms both on directional and tensor-valued images. (C) 2009 Elsevier Ltd. All rights reserved.

Discover related content

Find related publications, people, projects and more using interactive charts.

View graph of relations