Numerical framework for simulating bio-species transport in microfluidic channels with application to antibody biosensors

Fatemeh Shahbazi, Masoud Jabbari, Mohammad Nasr Esfahani, Amir Keshmiri*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Diagnosis is a fundamental stage in health care and medical treatment. Microfluidic biosensors and lab-on-a-chip devices are amongst the few practical tools for achieving this goal. A new computational code, specifically for designing microfluidic-integrated biosensors is developed, the details of which is presented in this work. This new approach is developed using control-volume based finite-element (CVFEM) method and solves bio-recognition chemical reactions and full Navier–Stokes equations. The results of the proposed platform are validated against the experimental data for a microfluidic based biosensor, where excellent agreement is achieved. The properties of the biosensor, sample, buffer fluid and even the microfluidic channel can easily be modified in this platform. This feature provides the scientific community with the ability to design a specific biosensor for requested point-of-care applications. • A new approach is developed using control-volume based finite-element (CVFEM) method for investigating flow inside a microfluidic-integrated biosensor. It is also used to study the influence of surface functionalization on binding cycle. • The proposed model solves bio-recognition chemical reactions as well as full Navier–Stokes and energy equations. Experimental-based or personalized equations of the chemical reactions and flow behaviour are adoptable to this code. • The developed model is Fortran-based and has the potential to be used in both industry and academia for biosensing technology.

Original languageEnglish
Article number101132
Number of pages11
Early online date17 Nov 2020
Publication statusPublished - 2020

Bibliographical note

Funding Information:
The first author would like to thank the Department of Mechanical, Aerospace and Civil Engineering (MACE) at the University of Manchester for providing PhD funding under the ‘Exceptional Women in Engineering’ Scheme.

Publisher Copyright:
© 2020 The Authors


  • Biosensors
  • CFD
  • Computational code
  • Computational fluid dynamics
  • Convective-diffusive-Langmuir transport simulation of bio-species inside a microfluidic-integrated biosensor with an implicit control-volume based finite-element method (CVFEM)
  • Microfluidics
  • Numerical modelling

Cite this