On the stability of a rigid body in a magnetostatic equilibrium

P.A. Davidson, Konstantin Ilin, H.K. Moffatt, Vladimir A. Vladimirov

Research output: Contribution to journalArticlepeer-review

Abstract

We study the stability of a perfectly conducting body in a magnetostatic equilibrium. The body is immersed in a fluid which is threaded by a three-dimensional magnetic field. The fluid may be perfectly conducting, non-conducting or have finite conductivity. We generalise the classical stability criterion of Bernstein et al. (Proc. Roy. Soc. London Ser. A 244 (1958) 17–40; I.B. Bernstein, The variational principle for problems of ideal magnetohydrodynamic stability, in: A.A. Galeev, R.N. Sudan (Eds.), Basic Plasma Physics: Selected Chapters, North-Holland, Amsterdam, 1989, pp. 199–227) and show that the body is stable to small isomagnetic perturbations if and only if the magnetic energy has a minimum at the equilibrium. For an equilibrium of a body in potential magnetic field, we obtain a sufficient condition for genuine nonlinear stability.
Original languageEnglish
Pages (from-to)511-523
Number of pages12
JournalEuropean Journal of Mechanics - B/Fluids
Volume22
Issue number5
DOIs
Publication statusPublished - Sept 2003

Cite this