Abstract
The uncertainty relations, pioneered by Werner Heisenberg nearly 90 years ago, set a fundamental limitation on the joint measurability of complementary observables. This limitation has long been a subject of debate, which has been reignited recently due to new proposed forms of measurement uncertainty relations. The present work is associated with a new error trade-off relation for compatible observables approximating two incompatible observables, in keeping with the spirit of Heisenberg's original ideas of 1927. We report the first direct test and confirmation of the tight bounds prescribed by such an error trade-off relation, based on an experimental realisation of optimal joint measurements of complementary observables using a single ultracold 40Ca+ ion trapped in a harmonic potential. Our work provides a prototypical determination of ultimate joint measurement error bounds with potential applications in quantum information science for high-precision measurement and information security.
Original language | English |
---|---|
Number of pages | 14 |
Journal | New Journal of Physics |
Volume | 19 |
Early online date | 4 May 2017 |
DOIs | |
Publication status | Published - Jun 2017 |
Bibliographical note
This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for detailsKeywords
- quantum theory
- quantum measurement
- measurement uncertainty
- quit
- experimental test