Paricle identification at VAMOS++ with machine learning techniques

Y. Cho, Y.H. Kim, S. Choi, J. Park, S. Bae, K.I. Hahn, Y. Son, A. Navin, A. Lemasson, M. Rejmund, D. Ramos, D. Ackermann, A. Utepov, C. Fourgeres, J.C. Thomas, J. Goupil, G. Fremont, G. de France, Y.X. Watanabe, Y. HirayamaS. Jeong, T. Niwase, H. Miyatake, P. Schury, M. Rosenbusch, K. Chae, C. Kim, S. Kim, G.M. Gu, M.J. Kim, P. John, A. Andreev, W. Korten, F. Recchia, G. de Angelis, R. Perez Vidal, K. Rezynkina, J. Ha, F. Didierjean, P. Marini, D. Treasa, I. Tsekhanovich, J. Dudouet, S. Bhattacharyya, G. Mukherjee, R. Banik, S. Bhattacharya, M. Mukai

Research output: Contribution to journalArticlepeer-review

Abstract

Multi-nucleon transfer reaction between 136Xe beam and 198Pt target was performed using the VAMOS++ spectrometer at GANIL to study the structure of n-rich nuclei around N=126. Unambiguous charge state identification was obtained by combining two supervised machine learning methods, deep neural network (DNN) and positional correction using a gradient-boosting decision tree (GBDT). The new method reduced the complexity of the kinetic energy calibration and outperformed the conventional method improving the charge state resolution by 8%.
Original languageUndefined/Unknown
Pages (from-to)240-242
Number of pages3
JournalNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Volume541
Early online date26 May 2023
DOIs
Publication statusPublished - 1 Aug 2023

Bibliographical note

© 2023 Published by Elsevier B.V. This is an author-produced version of the published paper. Uploaded in accordance with the University’s Research Publications and Open Access policy.

Keywords

  • VAMOS++
  • Machine learning
  • Multi-nucleon transfer reaction

Cite this