TY - JOUR
T1 - Phytodetoxification of TNT by transgenic plants expressing bacterial nitroreductase
AU - Hannink, N.
AU - French, C.E.
AU - Murray, J.A.H.
AU - Bruce, N.C.
AU - Rosser, S.J.
AU - Basran, A.
AU - Nicklin, S.
PY - 2001
Y1 - 2001
N2 - There is major international concern over the wide-scale contamination of soil and associated ground water by persistent explosives residues. 2,4,6-Trinitrotoluene (TNT) is one of the most recalcitrant and toxic of all the military explosives. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. Significant effort has recently been directed toward the use of plants to extract and detoxify TNT. To explore the possibility of overcoming the high phytotoxic effects of TNT, we expressed bacterial nitroreductase in tobacco plants. Nitroreductase catalyzes the reduction of TNT to hydroxyaminodinitrotoluene (HADNT), which is subsequently reduced to aminodinitrotoluene derivatives (ADNTs). Transgenic plants expressing nitroreductase show a striking increase in ability to tolerate, take up, and detoxify TNT. Our work suggests that expression of nitroreductase (NR) in plants suitable for phytoremediation could facilitate the effective cleanup of sites contaminated with high levels of explosives.
AB - There is major international concern over the wide-scale contamination of soil and associated ground water by persistent explosives residues. 2,4,6-Trinitrotoluene (TNT) is one of the most recalcitrant and toxic of all the military explosives. The lack of affordable and effective cleanup technologies for explosives contamination requires the development of better processes. Significant effort has recently been directed toward the use of plants to extract and detoxify TNT. To explore the possibility of overcoming the high phytotoxic effects of TNT, we expressed bacterial nitroreductase in tobacco plants. Nitroreductase catalyzes the reduction of TNT to hydroxyaminodinitrotoluene (HADNT), which is subsequently reduced to aminodinitrotoluene derivatives (ADNTs). Transgenic plants expressing nitroreductase show a striking increase in ability to tolerate, take up, and detoxify TNT. Our work suggests that expression of nitroreductase (NR) in plants suitable for phytoremediation could facilitate the effective cleanup of sites contaminated with high levels of explosives.
U2 - 10.1038/nbt1201-1168
DO - 10.1038/nbt1201-1168
M3 - Article
SN - 1087-0156
VL - 19
SP - 1168
EP - 1172
JO - Nature Biotechnology
JF - Nature Biotechnology
IS - 12
ER -