Phytoextraction as a tool for green chemistry

Andrew John Hunt, Christopher Anderson, Neil Charles Bruce, Andrea Munoz Garcia, Thomas Graedel, Mark Edward Hodson, John Meech, Nedal Nassar, Helen Louise Parker, Liz Rylott, Konstantina Sotiriou, Qing Zhang, James Hanley Clark

Research output: Contribution to journalArticlepeer-review

Abstract

The unique chemical and physical properties of metals mean that they are extensively utilized by industry in a huge variety of applications, including electronics, materials, industrial catalysts and chemicals. The increased consumer demand from a growing population worldwide with rising aspirations for a better life has resulted in concerns over the security of supply and accessibility of these valuable elements. As such, there is a growing need to develop alternative methods to recover them from waste repositories, current
or historic, both for hazard avoidance and potentially, as a new source of metals for industry. Phytoextraction (the use of plants for the recovery of metals from
waste repositories) is a green and novel technique for metal recovery, which, if done with the goal of resource supply rather than hazard mitigation, is termed “phytomining”. The ability for plants to form metallic nanoparticles
as a consequence of phytoextraction could make the recovered metal ideally suited for utilization in green chemical technologies, such as catalysis. This
review focuses on a multidisciplinary approach to elemental sustainability and highlights important aspects of metal lifecycle analysis, metal waste sources (including mine tailings), phytoextraction and potential green chemical applications that may result from the integration of these approaches.
Original languageEnglish
Pages (from-to)3-22
Number of pages20
JournalGreen Processing and Synthesis
Volume3
Issue number1
DOIs
Publication statusPublished - Feb 2014

Keywords

  • phytomining
  • phytoextraction
  • metals
  • nanoparticles

Cite this