Abstract
Coherent high-amplitude precession of the magnetization and spin waves with frequencies up to 40 GHz are generated by injecting picosecond compressive and shear acoustic pulses into nanometer-sized galfenol (FeGa ) films. The magnetization modulation is due to the picosecond inverse magnetostrictive effect. The oscillations of the magnetization measured by magneto-optical Kerr rotation last for several nanoseconds, and the maximum modulation of the in-plane effective magnetic field is as high as 40 mT. These results in combination with a comprehensive theoretical analysis show that galfenol films possess excellent properties for ultrafast magnetization control based on the picosecond inverse magnetostrictive effect.
Original language | English |
---|---|
Article number | 032409 |
Journal | Applied Physics Letters |
Volume | 103 |
Issue number | 3 |
DOIs | |
Publication status | Published - 15 Jul 2013 |