Abstract
The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 μm-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.
Original language | English |
---|---|
Article number | 045006 |
Number of pages | 6 |
Journal | Journal of Micromechanics and Microengineering |
Volume | 28 |
Issue number | 4 |
DOIs | |
Publication status | Published - 15 Feb 2018 |
Bibliographical note
Funding Information:The authors gratefully acknowledge the support by Tubitak under Grant no. 112E058. MNE was supported by the Tubitak-BIDEB 2216. This work was also supported by ISTKA under Grant TR10/16/YNY/0103 ‘Nanotechnology Platform for the Accessible and Sustainable Pilot Fabrication of High-Added-Value Products’.
Keywords
- nanowire resonator
- NEMS
- piezoresistive readout
- semiconductor manufacturing
- silicon nanowire
- top-down fabrication