Piezoresistivity characterization of silicon nanowires through monolithic MEMS

Mohammad Nasr Esfahani, Yusuf Leblebici, B. Erdem Alaca

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper presents a monolithic approach for the integration of silicon nanowires (Si NWs) with microelectromechanical systems (MEMS). The process is demonstrated for the case of co-fabrication of Si NWs with a 10-μm-Thick MEMS on the same silicon-on-insulator (SOI) wafer. MEMS is designed in the form of a characterization platform with an electrostatic actuator and a mechanical amplifier spanned by a single Si NW. This integrated platform is utilized for the successful measurement of Si NW piezoresistive gauge factor (GF) under a uniform uniaxial stress. Available techniques in this field include: i) Indirect (substrate) or direct (actuator) bending of Si NW necessitating rigorous models for the conversion of load to stress, ii) nanomanipulation and attachment of Si NW on MEMS, a non-monolithic technique posing residual stress and alignment issues, and iii) heterogeneous integration with separate Si layers for Si NW and MEMS, where a single SOI is not sufficient for the end product. Providing a monolithic solution to the integration of micro and nanoscale components, the presented technique successfully addresses the shortcomings of similar studies. In addition to providing a solution for electromechanical characterization, the technique also sets forth a promising pathway for multiscale, functional devices produced in a batch-compatible fashion, as it facilitates co-fabrication within the same Si crystal.

Original languageEnglish
Title of host publication2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2017
PublisherIEEE
Pages77-80
Number of pages4
ISBN (Electronic)9781509030590
DOIs
Publication statusPublished - 29 Aug 2017
Event12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2017 - Los Angeles, United States
Duration: 9 Apr 201712 Apr 2017

Publication series

Name2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2017

Conference

Conference12th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2017
Country/TerritoryUnited States
CityLos Angeles
Period9/04/1712/04/17

Bibliographical note

Funding Information:
ACKNOWLEDGMENT The authors gratefully acknowledge the support by Tubitak under grant no. 112E058. MNE was supported in part by the Swiss Government Excellence Grant.

Publisher Copyright:
© 2017 IEEE.

Keywords

  • Gauge Factor
  • Monolithic Integration
  • Piezoresistivity
  • Silicon Nanowire

Cite this