TY - JOUR
T1 - Potential isothiocyanate release remains constant across biofumigant seeding rates
AU - Doheny-Adams, Timothy
AU - Barker, Anthony
AU - Lilley, Catherine J.
AU - Wade, Ruth Nicola
AU - Ellis, Samuel
AU - Atkinson, Howard
AU - Urwin, Peter
AU - Redeker, Kelly Robert
AU - Hartley, Susan E
N1 - © 2018 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details
PY - 2018/5/23
Y1 - 2018/5/23
N2 - Biofumigation is an integrated pest management method involving the mulching of a glucosinolate containing cover crop into a field in order to generate toxic isothiocyanates, effective soil borne pest control compounds. Variation in biofumigation efficacy demonstrates a need to better understand the factors affecting pest control outcomes and develop best practice for biofumigant choice, growth conditions and mulching methods which allow the greatest potential isothiocyanate release. We measured the glucosinolate concentration of 6 different commercial varieties of three different biofumigant plant species: Brassica juncea (ISCI99, Vitasso, Scala) Raphanus sativus (Diablo, Bento) and Sinapis alba (Ida Gold). Plants were grown at a range of commercially appropriate seeding rates and sampled at three growth stages (early development, mature, and 50% flowering). Within biofumigant species, highest ITC release potential was achieved with B. juncea cv. ISCI99 and R. sativus cv. Bento. Highest ITC release potential occurred at 50% flowering growth stage across species. Seeding rate had minor impact on ITC release potential from R. sativus but had no significant effect on the ITC release potential of B. juncea or S. alba cultivars.
AB - Biofumigation is an integrated pest management method involving the mulching of a glucosinolate containing cover crop into a field in order to generate toxic isothiocyanates, effective soil borne pest control compounds. Variation in biofumigation efficacy demonstrates a need to better understand the factors affecting pest control outcomes and develop best practice for biofumigant choice, growth conditions and mulching methods which allow the greatest potential isothiocyanate release. We measured the glucosinolate concentration of 6 different commercial varieties of three different biofumigant plant species: Brassica juncea (ISCI99, Vitasso, Scala) Raphanus sativus (Diablo, Bento) and Sinapis alba (Ida Gold). Plants were grown at a range of commercially appropriate seeding rates and sampled at three growth stages (early development, mature, and 50% flowering). Within biofumigant species, highest ITC release potential was achieved with B. juncea cv. ISCI99 and R. sativus cv. Bento. Highest ITC release potential occurred at 50% flowering growth stage across species. Seeding rate had minor impact on ITC release potential from R. sativus but had no significant effect on the ITC release potential of B. juncea or S. alba cultivars.
U2 - 10.1021/acs.jafc.7b04610
DO - 10.1021/acs.jafc.7b04610
M3 - Article
SN - 0021-8561
JO - Journal of Agricultural and Food Chemistry
JF - Journal of Agricultural and Food Chemistry
ER -