Predicting anisotropic displacement parameters using molecular dynamics: density functional theory plus dispersion modelling of thermal motion in benzophenone

A.M. Reilly, D.A. Wann, M.J. Gutmann, M. Jura, C.A. Morrison, D.W.H. Rankin

Research output: Contribution to journalArticlepeer-review

Abstract

The benefits of combining experimental and computational methods have been demonstrated by a study of the dynamics and solid-state structure of α-benzophenone. Dispersion-corrected and -uncorrected density functional theory molecular dynamics simulations were used to obtain displacement parameters, with the dispersion-corrected simulations showing good agreement with the experimental neutron and X-ray diffraction values. At 70 K, quantum-nuclear effects resulted in poor values for the hydrogen atoms, but the heavy-atom values still show excellent agreement, suggesting that molecular dynamics simulations can be a useful tool for determining displacement parameters where experimental data are poor or limited.
Original languageEnglish
Pages (from-to)656-662
JournalJournal of Applied Crystallography
Volume46
Issue number3
DOIs
Publication statusPublished - Jun 2013

Keywords

  • α-benzophenone
  • density functional theory
  • molecular dynamics simulations
  • parameter prediction
  • Anisotropic displacement parameters
  • Dispersion Modelling
  • Displacement parameters
  • Experimental datum
  • Hydrogen atoms
  • Molecular dynamics simulations
  • Parameter prediction
  • Solid-state structures
  • Atoms
  • Density functional theory
  • Dispersions
  • X ray diffraction
  • Molecular dynamics

Cite this