Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs

Sujaan Das, Nadine Hertrich, Abigail J Perrin, Chrislaine Withers-Martinez, Christine R Collins, Matthew L Jones, Jean M Watermeyer, Elmar T Fobes, Stephen R Martin, Helen R Saibil, Gavin J Wright, Moritz Treeck, Christian Epp, Michael J Blackman

Research output: Contribution to journalArticlepeer-review

Abstract

The malaria parasite Plasmodium falciparum replicates within erythrocytes, producing progeny merozoites that are released from infected cells via a poorly understood process called egress. The most abundant merozoite surface protein, MSP1, is synthesized as a large precursor that undergoes proteolytic maturation by the parasite protease SUB1 just prior to egress. The function of MSP1 and its processing are unknown. Here we show that SUB1-mediated processing of MSP1 is important for parasite viability. Processing modifies the secondary structure of MSP1 and activates its capacity to bind spectrin, a molecular scaffold protein that is the major component of the host erythrocyte cytoskeleton. Parasites expressing an inefficiently processed MSP1 mutant show delayed egress, and merozoites lacking surface-bound MSP1 display a severe egress defect. Our results indicate that interactions between SUB1-processed merozoite surface MSP1 and the spectrin network of the erythrocyte cytoskeleton facilitate host erythrocyte rupture to enable parasite egress. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Original languageEnglish
Pages (from-to)433-444
Number of pages12
JournalCell Host & Microbe
Volume18
Issue number4
DOIs
Publication statusPublished - 14 Oct 2015

Cite this