Projects per year
Abstract
The issue of pulse pile-up is frequently encountered in nuclear experiments involving high counting rates, which will distort the pulse shapes and the energy spectra. A digital method of off-line processing of pile-up pulses is presented. The pile-up pulses were firstly identified by detecting the downward-going zero-crossings in the first-order derivative of the original signal, and then the constituent pulses were reconstructed based on comparing the pile-up pulse with four models that are generated by combining pairs of neutron and γ standard pulses together with a controllable time interval. The accuracy of this method in resolving the pile-up events was investigated as a function of the time interval between two pulses constituting a pile-up event. The obtained results show that the method is capable of disentangling two pulses with a time interval among them down to 20 ns, as well as classifying them as neutrons or γ rays. Furthermore, the error of reconstructing pile-up pulses could be kept below 6% when successive peaks were separated by more than 50 ns. By applying the method in a high counting rate of pile-up events measurement of the NEutron Detector Array (NEDA), it was empirically found that this method can reconstruct the pile-up pulses and perform neutron-γ discrimination quite accurately. It can also significantly correct the distorted pulse height spectrum due to pile-up events.
Original language | English |
---|---|
Pages (from-to) | 59-65 |
Number of pages | 7 |
Journal | Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment |
Volume | 897 |
Early online date | 24 Apr 2018 |
DOIs | |
Publication status | Published - 21 Jul 2018 |
Bibliographical note
© 2018 Elsevier B.V. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy.Keywords
- Digital
- First-order derivative
- Liquid scintillator
- Neutron-γ discrimination
- Pile-up
Projects
- 2 Finished
-
Nuclear Physics Consolidated Grant
Jenkins, D. (Principal investigator), Andreyev, A. (Co-investigator), Bentley, M. (Co-investigator), Diget, C. A. (Co-investigator), Dobaczewski, J. J. (Co-investigator), Fulton, B. R. (Co-investigator), Laird, A. M. (Co-investigator), Paschalis, S. (Co-investigator), Pastore, A. (Co-investigator), Petri, M. (Co-investigator) & Wadsworth, R. (Co-investigator)
SCIENCE AND TECHNOLOGY FACILITIES COUNCIL (STFC)
1/10/17 → 30/09/22
Project: Research project (funded) › Research
-
Nuclear Physics Consolidated Grant
Wadsworth, R. (Principal investigator), Wadsworth, R. (Principal investigator), Andreyev, A. (Co-investigator), Andreyev, A. (Co-investigator), Barton, C. J. (Co-investigator), Diget, C. A. (Co-investigator), Diget, C. A. (Co-investigator), Fulton, B. R. (Co-investigator), Fulton, B. R. (Co-investigator), Jenkins, D. (Co-investigator), Jenkins, D. (Co-investigator), Laird, A. M. (Co-investigator) & Laird, A. M. (Co-investigator)
SCIENCE AND TECHNOLOGY FACILITIES COUNCIL (STFC)
1/08/14 → 30/09/18
Project: Research project (funded) › Research