By the same authors

From the same journal

QTL underlying circadian clock parameters under seasonally variable field settings in Arabidopsis thaliana

Research output: Contribution to journalArticlepeer-review

Full text download(s)

Published copy (DOI)



Publication details

JournalG3: Genes, Genomes, Genetics
DateAccepted/In press - 5 Feb 2019
DatePublished (current) - 1 Apr 2019
Number of pages9
Pages (from-to)1-9
Original languageEnglish


The circadian clock facilitates coordination of the internal rhythms of an organism to daily environmental conditions, such as the light-dark cycle of one day. Circadian period length (the duration of one endogenous cycle) and phase (the timing of peak activity) exhibit quantitative variation in natural populations. Here, we measured circadian period and phase in June, July and September in three Arabidopsis thaliana recombinant inbred line populations. Circadian period and phase were estimated from bioluminescence of a genetic construct between a native circadian clock gene (COLD CIRCADIAN RHYTHM RNA BINDING 2) and the reporter gene (LUCIFERASE) after lines were entrained under field settings. Using a Bayesian mapping approach, we estimated the median number and effect size of genomic regions (Quantitative Trait Loci, QTL) underlying circadian parameters and the degree to which these regions overlap across months of the growing season. We also tested for QTL associations between the circadian clock and plant morphology. The genetic architecture of circadian phase was largely independent across months, as evidenced by the fact that QTL determining phase values in one month of the growing season were different from those determining phase in a second month. QTL for circadian parameters were shared with both cauline and rosette branching in at least one mapping population. The results provide the first insights into the QTL architecture of the clock under field settings, and suggest that the circadian clock is highly responsive to changing environments and that selection can act on clock phase in a nuanced manner.

Bibliographical note

Copyright © 2019 Rubin et al.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations