Quantum Electrostatics, Gauss’s Law, and a Product Picture for Quantum Electrodynamics: or, the Temporal Gauge Revised

Research output: Contribution to journalArticlepeer-review

Abstract

We provide a suitable theoretical foundation for the notion of the quantum coherent state which describes the electrostatic field due to a static external macroscopic charge distribution introduced by the author in 1998 and use it to rederive the formulae obtained in 1998 for the inner product of a pair of such states. (We also correct an incorrect factor of 4pi in some of those formulae.) Contrary to what one might expect, this inner product is usually non-zero whenever the total charges of the two charge distributions are equal, even if the charge distributions themselves are different. We actually display two different frameworks that lead to the same inner-product formulae, in the second of which Gauss’s law only holds in expectation value. We propose an experiment capable of ruling out the latter framework. We then address the problem of finding a product picture for QED—i.e. a reformulationin which it has a total Hamiltonian, arising as a sum of a free electromagnetic Hamiltonian, a free charged-matter Hamiltonian and an interaction term, acting on a Hilbert space which is a subspace (the physical subspace) of the full tensor product of a charged-matter Hilbert space and an electromagnetic-field Hilbert space. (The

traditional Coulomb gauge formulation of QED isn’t a product picture in this sense
because, in it, the longitudinal part of the electric field is a function of the charged
matter operators.) Motivated by the first framework for our coherent-state construction, we find such a product picture and exhibit its equivalence with Coulomb gauge QED both for a charged Dirac field and also for a system of non-relativistic charged balls. For each of these systems, in all states in the physical subspace (including the vacuum in the case of the Dirac field) the charged matter is entangled with longitudinal photons and Gauss’s law holds as an operator equation; albeit the electric field operator (and therefore also the full Hamiltonian) while self-adjoint on the physical subspace, fails to be self-adjoint on the full tensor-product Hilbert space. The inner products of our electrostatic coherent states and the product picture for QED are relevant as analogues to quantities that play a rôle in the author’s matter-gravity entanglement hypothesis. Also, the product picture provides a temporal gauge quantization of QED which appears to be free from the difficulties which plagued previous approaches to temporal-gauge quantization.
Original languageEnglish
Article number6
Number of pages61
JournalFoundations of Physics
Volume52
Issue number6
DOIs
Publication statusPublished - 27 Nov 2021

Bibliographical note

© Springer Science+Business Media, LLC, part of Springer Nature 2021. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy.

Keywords

  • uantum electrodynamics · Entanglement · Gauss’s law · Temporal gauge

Cite this