Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model

Chaitanya Joshi*, Elinor K. Irish, Timothy P. Spiller

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities.

Original languageEnglish
Article number45587
JournalScientific Reports
Early online date30 Mar 2017
Publication statusPublished - 30 Mar 2017

Bibliographical note

This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details

Cite this