TY - JOUR
T1 - Rapid isolation, expansion and differentiation of osteoprogenitors from full-term umbilical cord blood
AU - Hutson, E.L.
AU - Boyer, S.
AU - Genever, P.G.
PY - 2005
Y1 - 2005
N2 - There is an urgent clinical requirement for appropriate bone substitutes that can be used for the repair and regeneration of diseased or damaged skeletal tissues. Cell-sourcing limitations in particular have affected progress, largely because of the shortage of accessible tissues capable of yielding sufficient numbers of viable osteoprogenitor cells. Previous work has suggested that umbilical cord blood (UCB) contains circulating progenitor cells (mesenchymal stem cells) capable of osteogenic differentiation, although a comparable number of reports refute this claim. From a screen of more than 20 different culture conditions, we have identified an optimal, simple, and reliable technique to generate, from full-term human UCB, stromal cells with the ability to undergo rapid osteogenic differentiation. By comparing different sorting and culture strategies, we demonstrated that early exposure of mononuclear UCB cells to medium conditioned by osteoblastic cells in the presence of osteogenic supplements and human plasma, markedly increased the frequency of stromal cell growth, the rate of osteogenic differentiation, and their attachment to and spreading on calcium phosphate scaffolds. These findings suggest that full-term UCB may act as an appropriate source of osteoprogenitor cells, which will impact significantly on the development of autologous tissue- engineered bone constructs.
AB - There is an urgent clinical requirement for appropriate bone substitutes that can be used for the repair and regeneration of diseased or damaged skeletal tissues. Cell-sourcing limitations in particular have affected progress, largely because of the shortage of accessible tissues capable of yielding sufficient numbers of viable osteoprogenitor cells. Previous work has suggested that umbilical cord blood (UCB) contains circulating progenitor cells (mesenchymal stem cells) capable of osteogenic differentiation, although a comparable number of reports refute this claim. From a screen of more than 20 different culture conditions, we have identified an optimal, simple, and reliable technique to generate, from full-term human UCB, stromal cells with the ability to undergo rapid osteogenic differentiation. By comparing different sorting and culture strategies, we demonstrated that early exposure of mononuclear UCB cells to medium conditioned by osteoblastic cells in the presence of osteogenic supplements and human plasma, markedly increased the frequency of stromal cell growth, the rate of osteogenic differentiation, and their attachment to and spreading on calcium phosphate scaffolds. These findings suggest that full-term UCB may act as an appropriate source of osteoprogenitor cells, which will impact significantly on the development of autologous tissue- engineered bone constructs.
U2 - 10.1089/ten.2005.11.1407
DO - 10.1089/ten.2005.11.1407
M3 - Article
SN - 1937-3341
VL - 11
SP - 1407
EP - 1420
JO - Tissue Engineering Part A
JF - Tissue Engineering Part A
IS - 9-10
ER -