R/BHC: Fast Bayesian hierarchical clustering for microarray data

Richard S. Savage, Katherine Heller, Yang Xu, Zoubin Ghahramani, William M. Truman, Murray Grant, Katherine J. Denby, David L. Wild*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Background: Although the use of clustering methods has rapidly become one of the standard computational approaches in the literature of microarray gene expression data analysis, little attention has been paid to uncertainty in the results obtained. Results: We present an R/Bioconductor port of a fast novel algorithm for Bayesian agglomerative hierarchical clustering and demonstrate its use in clustering gene expression microarray data. The method performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge. Conclusion: Biologically plausible results are presented from a well studied data set: expression profiles of A. thaliana subjected to a variety of biotic and abiotic stresses. Our method avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric.

Original languageEnglish
Article number242
JournalBMC Bioinformatics
Publication statusPublished - 6 Aug 2009

Cite this