Abstract
Proxy records of past sea-level change provide a means of extending sea-level histories from tide gauges into the pre-industrial period. This is especially valuable in the South Atlantic region where sea-level data are limited to only a few tide-gauge records. Multi-proxy approaches to sea-level reconstruction are relatively rare but have distinct benefits when groups of micro-organisms are sparse or under-represented in modern or fossil sediments. Here, we address this challenge by utilising surface foraminifera, testate amoebae and diatoms from a salt marsh at Swan Inlet, East Falkland. All three micro-organism groups occupied distinct vertical niches in the contemporary salt-marsh. We investigated the relative performance of each group of micro-organisms in providing a sea-level reconstruction using individual (group-specific) regression models and with a multi-proxy regression model that combined all three groups. Foraminifera alone were not a suitable proxy. Surveyed sample elevations were closely matched by estimated elevations using Weighted-Average (WA) and Weighted-Average Partial-Least-Squares (WA- PLS) regressions. Relative sea-level reconstructions were derived by applying each model to microfossil assemblages recovered from a core (SI-2) from the same site. The combined transfer function yielded reconstructive precision (± 0.08 m) comparable to our best single-proxy transfer function (± 0.06 m) but only 18% of palaeo-samples were identified as having “close” or “good” analogues in the combined training data set. We highlight the benefit of a pragmatic approach to sea-level reconstructions whereby additional proxies should be employed if the use of only one proxy performs poorly across the width of the elevation gradient.
Original language | English |
---|---|
Article number | 101923 |
Number of pages | 17 |
Journal | Marine Micropaleontology |
Volume | 162 |
Early online date | 6 Oct 2020 |
DOIs | |
Publication status | Published - 1 Jan 2021 |
Keywords
- Falkland Islands
- Sea level reconstruction
- South Atlantic
- Transfer functions