Rees algebras of sparse determinantal ideals

Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini, Irena Swanson

Research output: Contribution to journalArticlepeer-review

Abstract

We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a $2\times n$ sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.
Original languageEnglish
JournalTransactions of the American Mathematical Society
Publication statusAccepted/In press - 27 Nov 2023

Bibliographical note

This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Keywords

  • math.AC
  • Primary 13A30, 13C40, Secondary 14M12, 13P10, 05E40, 13F50

Cite this