Representations of Yangians with Gelfand-Zetlin bases

Maxim Nazarov, Vitaly Tarasov

Research output: Contribution to journalArticlepeer-review

Abstract

We study certain family of finite-dimensional modules over the Yangian $Y(gl_N)$. The algebra $Y(gl_N)$ comes equipped with a distinguished maximal commutative subalgebra $A(gl_n)$ generated by the centres of all algebras in the chain $Y(gl_1)\subset Y(gl_2)\subset...\subset Y(gl_N)$. We study the finite-dimensional $Y(gl_N)$-modules with a semisimple action of the subalgebra $A(gl_N)$. We call these modules tame.
We provide a characterization of irreducible tame modules in terms of their Drinfeld polynomials. We prove that every irreducible tame module splits into a tensor product of modules corresponding to the skew Young diagrams and some one-dimensional module.
The eigenbases of $A(gl_N)$ in irreducible tame modules are called Gelfand-Zetlin bases. We provide explicit formulas for the action of the Drinfeld generators of the algebra $Y(gl_N)$ on the vectors of Gelfand-Zetlin bases.
Original languageEnglish
Pages (from-to)181-212
Number of pages32
JournalJournal fur die reine und angewandte Mathematik (Crelle's Journal)
Volume496
Issue number496
DOIs
Publication statusPublished - 13 Mar 1998

Keywords

  • XXZ MODEL
  • R-MATRIX

Cite this