Abstract
A tandem enzymatic strategy to enhance the scope of Calkylation of small molecules via the in situ formation of S-adenosyl methionine (SAM) cofactor analogues is described. A solventexposed channel present in the SAM-forming enzyme SalL tolerates 5'-chloro-5’-deoxyadenosine (ClDA) analogues modified at the 2position of the adenine nucleobase. Coupling SalL-catalyzed cofactor production with C-(m)ethyl transfer to coumarin substrates catalyzed by the methyltransferase (MTase) NovO forms C(m)ethylated coumarins in superior yield and greater substrate scope relative to that obtained using cofactors lacking nucleobase modifications. Establishing the molecular determinants which influence C-alkylation provides the basis to develop a late-stage enzymatic platform for the preparation of high value small molecules
Original language | English |
---|---|
Pages (from-to) | 1-7 |
Number of pages | 7 |
Journal | Angewandte Chemie International Edition |
Early online date | 1 Oct 2019 |
DOIs | |
Publication status | Published - 2 Dec 2019 |