Abstract
REDD+ (reducing emissions from deforestation, and forest degradation, plus the
conservation of forest carbon stocks, sustainable management of forests, and enhancement of forest carbon stocks, in developing countries) requires information on land use and land cover changes (LULCC) and carbon emissions trends from the past to the present and into the future. Here we use the results of participatory scenario development in Tanzania, to assess the potential interacting impacts on carbon stock, biodiversity and water yield of alternative scenarios where REDD+ is effectively implemented or not by 2025, the green economy (GE) and the business as usual (BAU) respectively. Under the BAU scenario, land use and land cover changes causes 296 MtC national stock loss by 2025, reduces the extent of suitable habitats for endemic and rare species, mainly in encroached protected mountain forests, and produce changes of water yields. In the GE scenario, national stock loss decreases to 133 MtC. In this scenario, consistent LULCC impacts occur within small forest patches with high carbon density, water catchment capacity and biodiversity richness. Opportunities for maximising carbon emissions reductions nationally are largely related to sustainable woodland management but also contain trade-offs with biodiversity conservation and changes in water availability.
conservation of forest carbon stocks, sustainable management of forests, and enhancement of forest carbon stocks, in developing countries) requires information on land use and land cover changes (LULCC) and carbon emissions trends from the past to the present and into the future. Here we use the results of participatory scenario development in Tanzania, to assess the potential interacting impacts on carbon stock, biodiversity and water yield of alternative scenarios where REDD+ is effectively implemented or not by 2025, the green economy (GE) and the business as usual (BAU) respectively. Under the BAU scenario, land use and land cover changes causes 296 MtC national stock loss by 2025, reduces the extent of suitable habitats for endemic and rare species, mainly in encroached protected mountain forests, and produce changes of water yields. In the GE scenario, national stock loss decreases to 133 MtC. In this scenario, consistent LULCC impacts occur within small forest patches with high carbon density, water catchment capacity and biodiversity richness. Opportunities for maximising carbon emissions reductions nationally are largely related to sustainable woodland management but also contain trade-offs with biodiversity conservation and changes in water availability.
Original language | English |
---|---|
Pages (from-to) | 17-24 |
Number of pages | 8 |
Journal | Environmental conservation |
Volume | 46 |
Issue number | 1 |
Early online date | 18 Sept 2018 |
DOIs | |
Publication status | Published - 1 Mar 2019 |
Bibliographical note
© Foundation for Environmental Conservation 2018. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.Keywords
- REDD+
- biodiversity
- carbon
- decision-making
- ecosystem services trade-offs
- participatory GIS
- water