Search for e→τ charged lepton flavor violation at the EIC with the ECCE detector

J. X. Zhang, S. Mantry, J. K. Adkins, Y. Akiba, A. Albataineh, M. Amaryan, I. C. Arsene, C. Ayerbe Gayoso, J. Bae, X. Bai, M. D. Baker, M. Bashkanov, R. Bellwied, F. Benmokhtar, V. Berdnikov, J. C. Bernauer, F. Bock, W. Boeglin, M. Borysova, E. BrashP. Brindza, W. J. Briscoe, M. Brooks, S. Bueltmann, M. H.S. Bukhari, A. Bylinkin, R. Capobianco, W. C. Chang, Y. Cheon, K. Chen, K. Chen, K. Y. Cheng, M. Chiu, T. Chujo, Z. Citron, E. Cline, E. Cohen, T. Cormier, Y. Corrales Morales, C. Cotton, J. Crafts, C. Crawford, S. Creekmore, C. Cuevas, J. Cunningham, G. David, C. T. Dean, M. Demarteau, S. Diehl, N. Doshita, R. Dupré, J. M. Durham, R. Dzhygadlo, R. Ehlers, L. El Fassi, A. Emmert, R. Ent, C. Fanelli, R. Fatemi, S. Fegan, M. Finger, J. Frantz, M. Friedman, I. Friscic, D. Gangadharan, S. Gardner, K. Gates, F. Geurts, R. Gilman, D. Glazier, E. Glimos, Y. Goto, N. Grau, S. V. Greene, A. Q. Guo, L. Guo, S. K. Ha, J. Haggerty, T. Hayward, X. He, O. Hen, D. W. Higinbotham, M. Hoballah, T. Horn, A. Hoghmrtsyan, P. H.J. Hsu, J. Huang, G. Huber, A. Hutson, K. Y. Hwang, C. E. Hyde, M. Inaba, T. Iwata, H. S. Jo, K. Joo, N. Kalantarians, G. Kalicy, K. Kawade, S. J.D. Kay, A. Kim, B. Kim, C. Kim, M. Kim, Y. Kim, E. Kistenev, V. Klimenko, S. H. Ko, I. Korover, W. Korsch, G. Krintiras, S. Kuhn, C. M. Kuo, T. Kutz, J. Lajoie, D. Lawrence, S. Lebedev, H. Lee, J. S.H. Lee, S. W. Lee, Y. J. Lee, W. B. Li, W. B. Li, X. Li, Y. T. Liang, S. Lim, C. H. Lin, D. X. Lin, K. Liu, M. X. Liu, K. Livingston, N. Liyanage, W. J. Llope, C. Loizides, E. Long, R. S. Lu, Z. Lu, W. Lynch, D. Marchand, M. Marcisovsky, C. Markert, P. Markowitz, H. Marukyan, P. McGaughey, M. Mihovilovic, R. G. Milner, A. Milov, Y. Miyachi, A. Mkrtchyan, H. Mkrtchyan, P. Monaghan, R. Montgomery, D. Morrison, A. Movsisyan, C. Munoz Camacho, M. Murray, K. Nagai, J. Nagle, I. Nakagawa, C. Nattrass, D. Nguyen, S. Niccolai, R. Nouicer, G. Nukazuka, M. Nycz, V. A. Okorokov, S. Orešić, J. D. Osborn, C. O'Shaughnessy, S. Paganis, Z. Papandreou, S. F. Pate, M. Patel, C. Paus, G. Penman, M. G. Perdekamp, D. V. Perepelitsa, H. Periera da Costa, K. Peters, W. Phelps, E. Piasetzky, C. Pinkenburg, I. Prochazka, T. Protzman, M. L. Purschke, J. Putschke, J. R. Pybus, R. Rajput-Ghoshal, J. Rasson, B. Raue, K. F. Read, K. Røed, R. Reed, J. Reinhold, E. L. Renner, J. Richards, C. Riedl, T. Rinn, J. Roche, G. M. Roland, G. Ron, M. Rosati, C. Royon, J. Ryu, S. Salur, N. Santiesteban, R. Santos, M. Sarsour, J. Schambach, A. Schmidt, N. Schmidt, C. Schwarz, J. Schwiening, R. Seidl, A. Sickles, P. Simmerling, S. Sirca, D. Sharma, Z. Shi, T. A. Shibata, C. W. Shih, S. Shimizu, U. Shrestha, K. Slifer, K. Smith, D. Sokhan, R. Soltz, W. Sondheim, J. Song, I. I. Strakovsky, P. Steinberg, P. Stepanov, J. Stevens, J. Strube, P. Sun, X. Sun, K. Suresh, V. Tadevosyan, W. C. Tang, S. Tapia Araya, S. Tarafdar, L. Teodorescu, D. Thomas, A. Timmins, L. Tomasek, N. Trotta, R. Trotta, T. S. Tveter, E. Umaka, A. Usman, H. W. van Hecke, C. Van Hulse, J. Velkovska, E. Voutier, P. K. Wang, Q. Wang, Y. Wang, D. P. Watts, N. Wickramaarachchi, L. Weinstein, M. Williams, C. P. Wong, L. Wood, M. H. Wood, C. Woody, B. Wyslouch, Z. Xiao, Y. Yamazaki, Y. Yang, Z. Ye, H. D. Yoo, M. Yurov, N. Zachariou, W. A. Zajc, W. Zha, J. X. Zhang, Y. Zhang, Y. X. Zhao, X. Zheng*, P. Zhuang

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review


The recently approved Electron-Ion Collider (EIC) will provide a unique new opportunity for searches of charged lepton flavor violation (CLFV) and other new physics scenarios. In contrast to the e↔μ CLFV transition for which very stringent limits exist, there is still a relatively large discovery space for the e→τ CLFV transition, potentially to be explored by the EIC. With the latest detector design of ECCE (EIC Comprehensive Chromodynamics Experiment) and projected integral luminosity of the EIC, we find the τ-leptons created in the DIS process ep→τX are expected to be identified with high efficiency. A first ECCE simulation study, restricted to the 3-prong τ-decay mode and with limited statistics for the Standard Model backgrounds, estimates that the EIC will be able to improve the current exclusion limit on e→τ CLFV by an order of magnitude. The very high vertex resolution of the ECCE detector configuration plays a critical role in τ identification.

Original languageEnglish
Article number168276
JournalNuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Early online date22 May 2023
Publication statusPublished - 1 Aug 2023

Bibliographical note

Funding Information:
We acknowledge support from the Office of Nuclear Physics in the Office of Science in the Department of Energy , the National Science Foundation , and the Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) 20200022DR .

Funding Information:
We thank the EIC Silicon Consortium for cost estimate methodologies concerning silicon tracking systems, technical discussions, and comments. We acknowledge the important prior work of projects eRD16, eRD18, and eRD25 concerning research and development of MAPS silicon tracking technologies. We thank the EIC LGAD Consortium for technical discussions and acknowledge the prior work of project eRD112. We thank Abhay Deshpande, Ciprian Gal and Krishna Kumar for useful ideas and discussions during the initial stages of this study prior to the ECCE-specific analysis. We thank Guillelmo Gomez Ceballos Retuerto and Hubert Spiesberger for their useful discussions and comments. We acknowledge support from the Office of Nuclear Physics in the Office of Science in the Department of Energy, the National Science Foundation, and the Los Alamos National LaboratoryLaboratory Directed Research and Development (LDRD)20200022DR.

Publisher Copyright:
© 2023 Elsevier B.V.


  • BSM
  • CLFV
  • ECCE
  • EIC
  • Electroweak
  • Leptoquark

Cite this