Secure Index and Data Symbol Modulation for OFDM-IM

Yonggu Lee, Hanseong Jo, Youngwook Ko, Jinho Choi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


In this paper, we propose a secure index and data symbol modulation scheme for orthogonal frequency division multiplexing with index modulation (OFDM-IM) systems. By exploiting the notion of the channel reciprocity in time division duplexing mode over wireless channels for shared channel state information as a secret key, we investigate randomized mapping rules for index modulation as well as data symbol modulation. Due to the randomized mapping rules for index and data symbol modulation in OFDM-IM, an eavesdropper is not able to correctly decide message bits even though active subcarriers and their symbols are correctly estimated. In particular, we exploit a characteristic of OFDM-IM which uses a fraction of subcarriers for transmissions to enhance security of data symbol modulation. In addition, to design a set of mapping rules for data symbol modulation, we investigate both a random-selection-based set and a bit-mismatch-based set. Through the analysis and simulation results, we demonstrate that the proposed scheme based on the randomized mapping rules for index modulation and data symbol modulation has a better performance than an existing scheme (modified for OFDM-IM) in terms of bit error rate (BER) and successful attack probability. In particular, we can show that the BER at an eavesdropper is much higher if the bit-mismatch-based set of mapping rules is used.

Original languageEnglish
Article number8093595
Pages (from-to)24959-24974
Number of pages16
JournalIEEE Access
Publication statusPublished - 31 Oct 2017
Externally publishedYes

Bibliographical note

© 2017 IEEE. Translations and content mining are permitted for academic research only.


  • data symbol modulation
  • index modulation
  • Orthogonal frequency division multiplexing
  • physical layer security

Cite this