Self-assembled gel tubes, filaments and 3D-printing with in situ metal nanoparticle formation and enhanced stem cell growth

Research output: Contribution to journalArticlepeer-review


This paper reports simple strategies to fabricate self-assembled artificial tubular and filamentous systems from a low molecular weight gelator (LMWG). In the first strategy, tubular ‘core–shell’ gel structures based on the dibenzylidenesorbitol-based LMWG DBS-CONHNH2 were made in combination with the polymer gelator (PG) calcium alginate. In the second approach, gel filaments based on DBS-CONHNH2 alone were prepared by wet spinning at elevated concentrations using a ‘solvent-switch’ approach. The higher concentrations used in wet-spinning prevent the need for a supporting PG. Furthermore, this can be extended into a 3D-printing method, with the printed LMWG objects showing excellent stability for at least a week in water. The LMWG retains its unique ability for in situ precious metal reduction, yielding Au nanoparticles (AuNPs) within the tubes and filaments when they are exposed to AuCl3 solutions. Since the gel filaments have a higher loading of DBS-CONHNH2, they can be loaded with significantly more AuNPs. Cytotoxicity and viability studies on human mesenchymal stem cells show that the DBS-CONHNH2 and DBS-CONHNH2/alginate hybrid gels loaded with AuNPs are biocompatible, with the presence of AuNPs enhancing stem cell metabolism. Taken together, these results indicate that DBS-CONHNH2 can be shaped and 3D-printed, and has considerable potential for use in tissue engineering applications.
Original languageEnglish
Pages (from-to)1972-1981
Number of pages10
JournalChemical Science
Early online date27 Jan 2022
Publication statusE-pub ahead of print - 27 Jan 2022

Bibliographical note

© 2022 The Author(s). Published by the Royal Society of Chemistry

Cite this