Self-Assembled Nanomicelles as Curcumin Drug Delivery Vehicles: Impact on Solitary Fibrous Tumor Cell Protein Expression and Viability

Gianpaolo Dagrada, Katia Rupel, Serena Zacchigna, Elena Tamborini, Silvana Pilotti, Adalberto Cavalleri, Loryn E. Fechner, Erik Laurini, David Kelham Smith, Silvia Brich, Sabrina Pricl

Research output: Contribution to journalArticlepeer-review

Abstract

Solitary fibrous tumors (SFTs) are rare soft tissue sarcomas that rely on several epithelial-mesenchymal transition (EMT) protein regulators for invasion/metastatic progression. Curcumin (CUR) has several pharmacological activities, including anticancer activity and the ability to suppress the EMT process. However, poor absorption, rapid metabolism, and side effects at high
doses limit the clinical applications of CUR. Here we present the results obtained by treating SFT cells with free CUR and three different CUR-loaded nanomicelles (NMs), each of which has its surface decorated with different ligands. All CUR-loaded NMs were more efficient in suppressing SFT cell viability and expression of EMT markers than CUR alone. Combined treatments with the pan-histone
deacetylase dual inhibitor SAHA revealed a differential ability in inhibiting EMT markers expression and SFT cell invasiveness, depending on the NM-ligand type. Finally, combinations of photodynamic therapy and CUR-loaded NM administrations resulted in almost complete SFT cell viability abrogation 24 h after laser irradiation.
Original languageEnglish
Pages (from-to)4689-4701
Number of pages13
JournalMOLECULAR PHARMACEUTICS
Volume15
Early online date4 Sept 2018
DOIs
Publication statusPublished - Oct 2018

Bibliographical note

© 2018 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Cite this