By the same authors

From the same journal

From the same journal

Self-Assembled Multivalent (SAMul) Polyanion Binding – Impact of Hydrophobic Modifications in the Micellar Core on DNA and Heparin Binding at the Peripheral Cationic Ligands

Research output: Contribution to journalArticle

Full text download(s)

Author(s)

Department/unit(s)

Publication details

JournalChemistry : A European Journal
DateAccepted/In press - 17 Mar 2017
DatePublished (current) - 20 Mar 2017
Number of pages9
Original languageEnglish

Abstract

This paper reports a small family of cationic surfactants designed to bind polyanions such as DNA and heparin. Each molecule has the same hydrophilic cationic ligand, and a hydrophobic aliphatic group with eighteen carbon atoms with either one, two or three alkene groups within the hydrophobic chain (C18-1, C18-2 and C18-3). Dynamic light scattering indicates that more alkenes lead to geometric distortion, giving rise to larger self-assembled multivalent (SAMul) nanostructures. Mallard Blue and Ethidium Bromide dye displacement assays demonstrate that heparin and DNA have markedly different binding preferences, with heparin binding most effectively to C18-1, and DNA to C18-3, even though the molecular structural differences of these SAMul systems are buried in the hydrophobic core. Multiscale modelling suggests that adaptive heparin maximises enthalpically-favourable interactions with C18-1, while shape-persistent DNA forms a similar number of interactions with each ligand display, but with slightly less entropic cost for binding to C18-3 – fundamental thermodynamic differences in SAMul binding of heparin or DNA. This study therefore provides unique insight into electrostatic molecular recognition between highly charged nanoscale surfaces in biologically-relevant systems.

Bibliographical note

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details.

Discover related content

Find related publications, people, projects, datasets and more using interactive charts.

View graph of relations