Projects per year
Abstract
The g factors of 11/2− isomers in semimagic 109Sn and 111Sn (isomeric lifetimes τ=2.9(3) ns and τ=14.4(7) ns, respectively) were measured by an extension of the Time Differential Perturbed Angular Distribution technique, which uses LaBr3 detectors and the hyperfine fields of a gadolinium host to achieve precise measurements in a new regime of short-lived isomers. The results, g(11/2−;109Sn)=−0.186(8) and g(11/2−;111Sn)=−0.214(4), are significantly lower in magnitude than those of the 11/2− isomers in the heavier isotopes and depart from the value expected for a near pure neutron h11/2 configuration. Broken-symmetry density functional theory calculations applied to the sequence of 11/2− states reproduce the magnitude and location of this deviation. The g(11/2−) values are affected by shape core polarization; the odd 0h11/2 neutron couples to Jπ=2+,4+,6+... configurations in the weakly-deformed effective core, causing a decrease in the g-factor magnitudes.
Original language | Undefined/Unknown |
---|---|
Article number | 138268 |
Number of pages | 6 |
Journal | Physics Letters B |
Volume | 847 |
Early online date | 25 Oct 2023 |
DOIs | |
Publication status | Published - 10 Dec 2023 |
Bibliographical note
© 2023 Oak Ridge National Laboratory.Projects
- 1 Active
-
Nuclear Physics Consolidated Grant 2021-2024
Jenkins, D., Andreyev, A., Bashkanov, M., Bentley, M., Dobaczewski, J. J., Laird, A. M., Paschalis, S., Pastore, A., Petri, M., Wadsworth, R., Watts, D. & Zachariou, N.
SCIENCE AND TECHNOLOGY FACILITIES COUNCIL (STFC)
1/10/21 → 31/03/25
Project: Research project (funded) › Research